• Ilovethebomb@lemm.ee
    link
    fedilink
    English
    arrow-up
    38
    ·
    2 months ago

    Regenerative braking on commuter trains is nothing new, it’s been around for decades.

    • Nightwatch Admin@feddit.nl
      link
      fedilink
      English
      arrow-up
      15
      ·
      2 months ago

      Agreed, but here it is done highly effective. The 1.8 degree temperature difference is a huge plus too - they can now also save serious amounts of power on ventilation.
      TfL, you listening?

      • christophski
        link
        fedilink
        English
        arrow-up
        6
        ·
        2 months ago

        The heat on the underground is mad, makes it so hard to dress for the weather. Go out in a coat because it’s cold then get down on the central line and everyone is sweating hard

      • guy_threepwood@lemmy.world
        link
        fedilink
        English
        arrow-up
        2
        ·
        2 months ago

        Victoria, Circle, District, Hammersmith and City, Metropolitan and the new Piccadilly Line trains (due soon) all have regenerative braking. The rest will follow as new trains are procured.

        As anyone who travels on the Victoria line in the summer will tell you: it helps, but not much.

    • pirat@lemmy.world
      link
      fedilink
      English
      arrow-up
      9
      ·
      2 months ago

      And even in some prototype bus, the Gyrobus, in the 50’s that used an electrically charged flywheel that was also (to some degree) regeneratively recharged when breaking:

      Rather than carrying an internal combustion engine or batteries, or connecting to overhead powerlines, a gyrobus carries a large flywheel that is spun at up to 3,000 RPM by a “squirrel cage” motor.[1] Power for charging the flywheel was sourced by means of three booms mounted on the vehicle’s roof, which contacted charging points located as required or where appropriate (at passenger stops en route, or at terminals, for instance). To obtain tractive power, capacitors would excite the flywheel’s charging motor so that it became a generator, in this way transforming the energy stored in the flywheel back into electricity. Vehicle braking was electric, and some of the energy was recycled back into the flywheel, thereby extending its range.

      Source: Wikipedia: Gyrobus