• TWeaK@lemm.ee
    link
    fedilink
    English
    arrow-up
    270
    arrow-down
    7
    ·
    1 year ago

    Excluding all the ancillary services, including the lasers that maintained the plasma, which was the principle part of this latest test.

    Factoring everything in, they’re at about 15% return.

    This is still very good for this stage, but the publications are grossly misleading.

    • Pelicanen@sopuli.xyz
      link
      fedilink
      arrow-up
      97
      ·
      1 year ago

      I want to add that experimental reactors used for scientific research might never become net energy positive and that would be fine. Their purpose isn’t to generate profit, it’s to learn more about the physics, so it will be more valuable for them to be adaptable than efficient.

      However, that doesn’t mean that you can’t take a configuration that has been shown to have potential and make a reactor that is more efficient than adaptable and use that to generate power for the electrical grid.

      Basically, they have two different purposes.

      • TWeaK@lemm.ee
        link
        fedilink
        English
        arrow-up
        49
        ·
        1 year ago

        Absolutely. Also, the fact that the reactor was only running for a short time plays a part. Usually there is a significant energy cost in starting and stopping, which is offset by running for a long time. However, these reactors are not designed for continued running.

        It’s all a process of development, and even though the article is perhaps a little sensationalist, they’re making good progress.

    • protist@mander.xyz
      link
      fedilink
      English
      arrow-up
      52
      arrow-down
      5
      ·
      1 year ago

      but the publications are grossly misleading.

      I think you’re only referencing the headline, the article itself clearly states what you said

        • protist@mander.xyz
          link
          fedilink
          English
          arrow-up
          24
          arrow-down
          9
          ·
          1 year ago

          When one says a publication is grossly misleading, it certainly implies the entire publication

            • Cosmic Cleric@lemmy.world
              link
              fedilink
              arrow-up
              4
              ·
              1 year ago

              You’re not wrong, but we also should stop excusing, normalizing, and accepting wildly exaggerated for sales purposes titles of articles.

              • intensely_human@lemm.ee
                link
                fedilink
                arrow-up
                1
                ·
                1 year ago

                We should stop accepting lies.

                Unless there is some way this reaction actually did produce twice the energy input, it’s not misleading it’s a lie.

          • The Snark Urge@lemmy.world
            link
            fedilink
            English
            arrow-up
            15
            arrow-down
            4
            ·
            1 year ago

            Why have we accepted the standard of misleading headlines? “Oh well you didn’t read the article, I guess you and 90% of eyeballs get to be fundamentally misinformed” is an unhinged take.

            • protist@mander.xyz
              link
              fedilink
              English
              arrow-up
              7
              arrow-down
              3
              ·
              1 year ago

              I never said a misleading headline was acceptable. I said the publication is not misleading and that it covers the criticisms dude up above was leveling.

          • Cryophilia@lemmy.world
            link
            fedilink
            arrow-up
            5
            ·
            1 year ago

            “article” vs “publication”

            Two different things.

            The link takes you to an article. Publications are in actual scientific journals, not intended for popular consumption.

        • Donjuanme@lemmy.world
          link
          fedilink
          arrow-up
          14
          arrow-down
          3
          ·
          1 year ago

          What was your question? I only read “is the” and thought I could base my response off of only that.

        • Socsa@sh.itjust.works
          link
          fedilink
          arrow-up
          8
          ·
          1 year ago

          When I see “publication” I assume it’s the actual scientific paper and not the article reporting on said paper.

        • Danksy@lemmy.world
          link
          fedilink
          arrow-up
          7
          ·
          edit-2
          1 year ago

          It’s easier to nitpick than it is to interact with the actual argument.

          I agree with you. The headline is misleading, and I think it devalues the article.

    • EchoCT@lemmy.ml
      link
      fedilink
      arrow-up
      12
      arrow-down
      3
      ·
      1 year ago

      That’s what I came to the comments to find. Thank you. Would have been much bigger news if it was net energy positive.

        • Cryophilia@lemmy.world
          link
          fedilink
          arrow-up
          3
          ·
          1 year ago

          From another article: “In an experiment on 5 December, the lab’s National Ignition Facility (NIF) fusion reactor generated a power output of 3.15 megajoules from a laser power output of 2.05 megajoules – a gain of around 150 per cent. However, this is far outweighed by the roughly 300 megajoules drawn from the electrical grid to power the lasers in the first place.”

          https://www.newscientist.com/article/2350965-nuclear-fusion-researchers-have-achieved-historic-energy-milestone/

            • alkheemist@aussie.zone
              link
              fedilink
              arrow-up
              4
              ·
              1 year ago

              Powering the laser takes 300 MJ but the actual laser power (the energy in the light) is only 2.05 MJ. The rest of the energy is lost to heat and other inefficiencies. If the laser could be created with 100% efficiency then the input energy would also be 2.05 MJ.

            • Resonosity@lemmy.world
              link
              fedilink
              arrow-up
              3
              ·
              edit-2
              1 year ago

              Energy can be measured as occurring in different physical phenomena. There is energy in sound waves/packets, energy in light waves/packets, energy in matter, etc.

              The 300 MJ number refers to the electrical energy in the form of electromagnetic fields carried specifically through solid conductors via electron movement along the conductors.

              The 2.05 MJ number refers to the radiative energy in the form of electromagnetic fields sent specifically through free space/a vacuum (I presume; I didn’t read the article, so maybe the laser medium was a vacuum or something else) via photons/waves. No electrons, aside from those in the lasers that create the photons in the first place.

              So there is a conversion from electric to radiative energy here.

              Start Edit:

              And as another commenter said, in this conversion there are losses because materials aren’t perfect.

              :End Edit

              If the 3 MJ radiant energy from the nuclear material was then converted back into electric energy via steam processes, we’d get a comparable number compared to the 300 one.

              This is also why you see nuclear/CSP plants quoted in MWt and MWe: there is a conversion that takes place from thermal energy (vibrations of atoms/compounds) into electric energy.

        • nymwit@lemm.ee
          link
          fedilink
          arrow-up
          3
          ·
          edit-2
          1 year ago

          I can’t read the full article (paywalled for me) but it references the National Ignition Facility so the way it goes is super lasers blast a tiny hydrogen thing and that creates a tiny bit of fusion that releases the energy. The energy of the laser blast is what’s being called the input and the fusion energy released the output. What is misleading is that a greater amount of energy was used create the laser blast than the laser blast itself outputs. If you consider the energy that went into creating the laser blast the input (rather than the laser blast itself), then it’s usually not a net positive energy release.

            • pixelscript@lemmy.ml
              link
              fedilink
              English
              arrow-up
              3
              ·
              1 year ago

              Remember when incandescent light bulbs were the norm? They worked by sending full line voltage through a tiny tungsten wire that would get so hot that it glows, making some light, but 95% of the energy that gets consumed is frittered away as heat? The high-power lasers needed to make fusion happen are a lot like that.

              I believe all this article is saying is that 15% more energy than what came out of the lasers as useful laser light was liberated in the reaction.This completely ignores the energy it took to power those massively inefficient lasers.

              I think it also ignores the fact that the 15% more energy liberated wasn’t actually, like, harnessed by a generator. I believe (and I may be wrong) this was testing only the reaction itself. Actually hooking that up to a turbine and using it to create energy that is cost competitive with contemporary sources is still a completely unsolved problem.

            • nymwit@lemm.ee
              link
              fedilink
              arrow-up
              2
              ·
              1 year ago

              pixelscript@lemmy.ml got it, but basically lasers are pretty inefficient. The article I just found said (in a different run of this facility) they put 400MJ into the laser to get 2.5MJ out of it. So that makes the whole firing system what, 0.6% efficient? Your fusion reaction would have to give more than 400MJ to truly be in the positive for this particular setup/method, but again this facility is a research one and not meant to generate power - there isn’t even a way to harness/collect it here.

              • intensely_human@lemm.ee
                link
                fedilink
                arrow-up
                2
                ·
                1 year ago

                Oh so the laser’s generating mostly heat and a little coherent radiation, and they’re only referring to the coherent radiation as the “energy input” to the process.

                Hmm. Kinda sketch.

                Especially because that’s not trivial. If we have no way of obtaining laser light other than that process, and the laser is the only way to feed the fusion reactor, then that’s 100% on the balance books of this process.

    • Rakonat@lemmy.world
      link
      fedilink
      English
      arrow-up
      7
      arrow-down
      27
      ·
      1 year ago

      If anything has been consistent about fusion its always them desperately trying to spin babysteps and monumental leaps forward and trying to make themselves seem super clean and safe especially compared to fission.

      • legofreak@feddit.de
        link
        fedilink
        arrow-up
        34
        arrow-down
        3
        ·
        1 year ago

        If anything has been consistent about fusion its always them desperately trying to spin babysteps and monumental leaps forward

        That’s usually the media outlets sensationalising the results to the point where the articles are grossly misleading.

        trying to make themselves seem super clean and safe especially compared to fission.

        That’s just a fact, no need to try. The Fusion process is inherently safe the radioactive byproducts are generally short lived and easier to handle.

        • intensely_human@lemm.ee
          link
          fedilink
          arrow-up
          1
          arrow-down
          1
          ·
          1 year ago

          If publications keep misreporting your work, stop talking to them, and see different publications with a stronger commitment to the truth.

        • Rakonat@lemmy.world
          link
          fedilink
          English
          arrow-up
          4
          arrow-down
          21
          ·
          1 year ago

          Fusion is not inherently safe. It has significantly higher rate of neutron discharge for the enegy produced which can damage the reactor vessel and potential to cause nonfuel material to become radioactive.

          Ontop of any power disruption of the system has the potential for radioactive plasma to escape with nothing even remotely equivalent of a SCRAM to bring it back under control.

          The only reason fusion appears safe right now is because its all still developmental phase and any issues are being handwaved as prototyping issues and not treated like the actual potential catastrophes they are.

          • legofreak@feddit.de
            link
            fedilink
            arrow-up
            18
            arrow-down
            1
            ·
            1 year ago

            The total mass of reactants in the fusion chamber is below milligram, some of which is bound in stable isotopes. Even if all of it escaped, it would be far from catastrophic.
            The reaction itself cannot run away on its own because it requires a delicate balance in temperature and density, which will be immediately disturbed if there was a breach in containment.

            The walls will be activated by neutrons, but short of blowing the reactor up, there’s not much chance of materials escaping in a significant amount to pose a danger.

            • barsoap@lemm.ee
              link
              fedilink
              arrow-up
              12
              ·
              1 year ago

              Just for comparison: The nuclear safety requirements of a fusion reactor are ballpark those of the radiology department in your local hospital: An accident will give you, if you’re unlucky, a dose on the order of a dental x-ray. Decommissioning involves letting it sit there for 100years until it has cooled down to ambient radioactivity levels, if you’re cheeky you could send it to a place where the natural radiation levels are higher and declare it cool much faster.

              Why does noone talk about those ludicrously strong magnet fields and gigantic vacuum vessels? You’re standing right next to a massive volume of practically nothing and are worried that something leaks out?

  • Rubanski@lemm.ee
    link
    fedilink
    arrow-up
    183
    arrow-down
    8
    ·
    1 year ago

    Fusion reactor SLAMS surprised scientists with it’s INCREDIBLE output

  • usualsuspect191@lemmy.ca
    link
    fedilink
    arrow-up
    135
    arrow-down
    1
    ·
    1 year ago

    Firstly, the energy output falls far short of what would be needed for a commercial reactor, barely creating enough to heat a bath. Worse than that, the ratio is calculated using the lasers’ output, but to create that 2.1 megajoules of energy, the lasers draw 500 trillion watts, which is more power than the output of the entire US national grid. So these experiments break even in a very narrow sense of the term.

    It’s so refreshing to see an article at least mention the way these tests are measured are based on the energy just in the laser itself and not the total energy used.

    • FBJimmy@lemmus.org
      link
      fedilink
      English
      arrow-up
      56
      arrow-down
      1
      ·
      1 year ago

      I agree it’s good that the article is not hyping up the idea that the world will now definitely be saved by fusion and so we can all therefore go on consuming all the energy we want.

      There are still some sloppy things about the article that disappoint me though…

      1. They seem to be implying that 500 TW is obviously much larger than 2.1 MJ… but without knowing how long the 500 TW is required for, this comparison is meaningless.

      2. They imply that using more power than available from the grid is infeasible, but it evidently isn’t as they’ve done it multiple times - presumably by charging up local energy storage and releasing it quickly. Scaling this up is obviously a challenge though.

      3. The weird mix of metric prefixes (mega) and standard numbers (trillions) in a single sentence is a bit triggering - that might just be me though.

        • derphurr@lemmy.world
          link
          fedilink
          arrow-up
          23
          ·
          1 year ago

          Huh? Whatchu talkin bout Willis?

          Watt is a Joule per second

          Volts, Amps, kWh, MJ… These are all metric.

            • kbotc@lemmy.world
              link
              fedilink
              English
              arrow-up
              5
              ·
              1 year ago

              WE INVENTED IT AND BUH GAWD, WE WILL MEASURE IT IN MURICA UNITS!

              Ignore how nonsensical BTUs are: Gonna shove energy and weight into a single measurement and it changes based on the initial temperature of the water.

              • derphurr@lemmy.world
                link
                fedilink
                arrow-up
                4
                ·
                1 year ago

                Or HVAC uses tons of ice needed to cool something. Euroguys probably don’t have air conditioners, just that tilt window technology.

                I do like the obscure AWG scale especially 0000

                • kbotc@lemmy.world
                  link
                  fedilink
                  English
                  arrow-up
                  3
                  ·
                  1 year ago

                  British Thermal Units. It’s the energy needed to heat 1 lb of water 1 degree F.

                  The bad part is that no one bothered to set the starting temp of the water so there’s 5 separate standards for what the hell a BTU actually is, which makes it a really bad standard.

            • FBJimmy@lemmus.org
              link
              fedilink
              English
              arrow-up
              1
              ·
              1 year ago

              Fun fact: While metric predates our full understanding of electricity, our understanding of electricity played a key role in the definition of the SI units.

              As I understand it, the reason the SI unit for mass is kg not g - making it an outlier to my mind - is so that electical engineers could keep volts and amperes as convenient numbers.

              Long read: https://arxiv.org/abs/1512.07306

          • prettybunnys@sh.itjust.works
            link
            fedilink
            arrow-up
            3
            ·
            1 year ago

            In a number of instances where there is not a standard in place already it is not uncommon to see metric measurements mixed with imperial or US customary measurements.

            I’m not in any way shape or form claiming that ALL of it is mixed.

            However what does actually happen is the a unit of measure might be mixed with a customary one and then that becomes the defacto measurement, you may see wire resistance shown as a mix of Ohms/1000ft.

            I am not getting into an argument about the merits of metric, I’m on board, I am with you. That doesn’t mean there aren’t some silly oddballs.

            • ForgotAboutDre@lemmy.world
              link
              fedilink
              arrow-up
              1
              ·
              1 year ago

              Is their an imperial equivalent to ohm?

              It might be the case that imperial resistance is ohm the same as metric. Metric uses ohm as it’s constituent with base units of metric, but imperial doesn’t abide by rules like that.

              If you had to make a imperial equivalent to resistance, it would be a fraction of the resistance of the monarchs finger.

              • derphurr@lemmy.world
                link
                fedilink
                arrow-up
                1
                ·
                1 year ago

                There’s no non metric electrical units except ohms/1000 ft or cross section dimensions, and AWG (and MCM kilo circular mils kcmils) versus mm^2

                Why US uses awg with reverse scale instead of diameter is insane

                formula: D(AWG) = 0.005·92^((36-AWG)/39) inch

      • 4am@lemm.ee
        link
        fedilink
        arrow-up
        14
        arrow-down
        1
        ·
        1 year ago

        Exactly. These tests aren’t meant to create a practical solution, but to provide knowledge and insight that a) it is possible and b) exactly what is necessary to make it happen, at a physical level. Before this, it (more out than in) was all theory, but now we’re got some hard data to work with.

        That’s a big step we’ve been chasing for a long, long time.

        • Meowoem@sh.itjust.works
          link
          fedilink
          arrow-up
          5
          arrow-down
          1
          ·
          1 year ago

          Yeah, and a good sign is that the countries with money to invest in the race all seem to be convinced we’ve got the science right and that the engineering challenges are solvable. There have been so many records broken recently we’re getting towards the end of the mile stones, hopefully soon we’ll start hearing about self sustaining experiments with records for how long they ran

    • AllonzeeLV@lemmy.world
      link
      fedilink
      arrow-up
      39
      arrow-down
      5
      ·
      1 year ago

      …and accidentally incinerated its home world, as the supply dependant lunar colony could only look on in horror.

      ✨The End✨

      • LarmyOfLone@lemm.ee
        link
        fedilink
        arrow-up
        28
        ·
        1 year ago

        I know you’re joking, but nuclear fusion is inherently safe because if it breaks there is no way to sustain a chain reaction. And is only creates mildly radioactive byproducts. So you could blow it up and it wouldn’t seriously contaminate the area.

        • Echo Dot
          link
          fedilink
          arrow-up
          21
          arrow-down
          1
          ·
          1 year ago

          Not only are the radioactive byproducts not that dangerous (everything is relative of course). But also they have incredibly short half lives so they go away long before the firefighters turned up.

        • AngryCommieKender@lemmy.world
          link
          fedilink
          arrow-up
          1
          arrow-down
          4
          ·
          1 year ago

          Technically fission has a similar physical barrier to infinite meltdown. Once the water leaves the core, the reaction stops. It was called China Syndrome, and we wouldn’t have worried about it at all, had the physicist that thought it up been a bit more competent with his math skills. Unfortunately, there are plenty of other ways that the reactors that we currently use can catastrophically fail.

    • Echo Dot
      link
      fedilink
      arrow-up
      28
      ·
      1 year ago

      When they do they should come up with some original quote.

      “The power of the sun in the palm of my hand”, something like that.

      • AngryCommieKender@lemmy.world
        link
        fedilink
        arrow-up
        1
        ·
        edit-2
        1 year ago

        At least they won’t be in danger of falling flat on the ground, halfway through their Big Words, due to muscle atrophy, the way every single other “first person on ______” is gonna have

        “That’s one small trip and fall for a human, one giant faceplant for mankind.”

  • blazera@kbin.social
    link
    fedilink
    arrow-up
    48
    arrow-down
    16
    ·
    1 year ago

    We already got plenty of nuclear fusion output with no energy input on our part. But folks dont want solar panels

    • Zorque@kbin.social
      link
      fedilink
      arrow-up
      64
      arrow-down
      5
      ·
      1 year ago

      What is with peoples insistence that we only ever use one kind of power generation?

      Wind, solar, fusion, fission, hydro, they all have their uses. Why limit yourself like some kind of console fanboy?

      • blazera@kbin.social
        link
        fedilink
        arrow-up
        16
        ·
        1 year ago

        That’s fair. Im big solar fanboy but if more people were fusion researchers the world wouldnt be a worse place.

      • ForgotAboutDre@lemmy.world
        link
        fedilink
        arrow-up
        5
        ·
        1 year ago

        Fusion is self sustained and highly scalable.

        If it was practical we wouldn’t need the other forms, except for places not serviced by electrical grids.

        Fission takes a long time to build and finance. It hasn’t been invested enough in. We need more green energy to replace fossil fuels faster than governments can get fusion plants up. That’s why wind, solar and hydro are and should be the preference.

        Hydro needs the right geography. Solar and wind need the right local weather. Solar great in a California desert, but terrible in Scotland where wind and hydro are very effective.

        There some cases where a specific technology is the best and clearest option. But when fission becomes reliable, it will cover the vast majority of use cases in the highly Industrialised nations. Everything else will be niche.

        • Zorque@kbin.social
          link
          fedilink
          arrow-up
          1
          arrow-down
          1
          ·
          1 year ago

          Well as soon as I can get a fission reactor in my house I’ll give up on energy independence then.

      • maness300@lemmy.world
        link
        fedilink
        arrow-up
        8
        arrow-down
        4
        ·
        1 year ago

        Why limit yourself like some kind of console fanboy?

        Propaganda by solar bros.

        It’s only the solar bros doing this because you can sell solar to the average idiot. Most people can’t own other forms of clean energy generation directly.

        • Cryophilia@lemmy.world
          link
          fedilink
          arrow-up
          2
          arrow-down
          1
          ·
          1 year ago

          I also have a suspicion that a lot of the renewables vs nuclear debate is stoked by fossil fuel interests

    • The Assman@sh.itjust.works
      link
      fedilink
      arrow-up
      34
      arrow-down
      5
      ·
      1 year ago

      *minus the energy needed to make, maintain, and replace solar panels.

      I support more solar installations, just calling out it isn’t free power.

      • rockSlayer@lemmy.world
        link
        fedilink
        arrow-up
        21
        arrow-down
        2
        ·
        1 year ago

        As more solar is installed, the less power input we need to provide. There will be a point where all solar power required to make a solar panel will be produced by solar panels

        • learningduck@programming.dev
          link
          fedilink
          arrow-up
          7
          ·
          1 year ago

          As more solar panels are installed, more material and maintenance are required. They deteriorate over time, and require large physical areas.

          I guess at that point, each panel needs to be extremely efficient to limit the space, extremely durable, made of cheap materials, easily recyclable into another panel.

    • mihies@kbin.social
      link
      fedilink
      arrow-up
      11
      arrow-down
      4
      ·
      1 year ago

      True, but that’s not reliable source of energy though, specially during short and cloudy winter days when it’s most needed. Look what happened in Germany and how they became on if the biggest European polluters. The key ingredient missing is energy storage. Once that’s solved, solar panels would become much more useful.

      • Socsa@sh.itjust.works
        link
        fedilink
        arrow-up
        2
        ·
        1 year ago

        We could massively subsidize home battery storage and this wouldn’t be an issue at all. Microgrids are the future anyway. The only reason why storage is an issue now is because it needs to be centralized. Once we get away from that tons of new possibilities open up.

        • mihies@kbin.social
          link
          fedilink
          arrow-up
          3
          ·
          1 year ago

          Home batteries are expensive and take a lot of place. Also they won’t last more than a day. Imagine winter time with short cloudy days. Realistically you need at least a month worth of energy storage and even then you need sun to recharge it. They would distribute energy consumption better though by charging during night.

      • blazera@kbin.social
        link
        fedilink
        arrow-up
        3
        arrow-down
        3
        ·
        1 year ago

        We have all the technology for energy storage we need, it just needs to be built. Theres gravity storage like pumped hydro, pressure storage, thermal storage, flywheels.

        • mihies@kbin.social
          link
          fedilink
          arrow-up
          2
          ·
          1 year ago

          Well, no. Sadly we don’t. At least not in the range needed. All of these require either specific geographic relief, something really huge, too expensive or combination. Perhaps the most promising is the green hydrogen, but then again, we have yet to see it at such scale. I’d love to be wrong, though.

          • blazera@kbin.social
            link
            fedilink
            arrow-up
            2
            ·
            1 year ago

            something really huge

            yeah, we use a lot of energy, absolutely every form of energy production we have involves really huge things. Massive mines, dams, pipelines, oil rigs, nuclear cooling towers, fossil fuel power plants, oil tankers. They just have to be built. we can excavate dams, build solid weight lifting facilities, molten salt storage, make arrays of flywheels. There’s a ton of answers to energy storage already, they dont involve resources with any kind of scarcity, they just have to be built.

    • billwashere@lemmy.world
      link
      fedilink
      English
      arrow-up
      3
      ·
      1 year ago

      Or bombs. They have fusion versions of those with a great deal more output than input but they’re not really fond of those either.

    • SchizoDenji@lemm.ee
      link
      fedilink
      arrow-up
      1
      arrow-down
      22
      ·
      1 year ago

      Solartards don’t realise that the problem with solar is storage and sun availability. It’s a fantastic idea on paper but unless you’re in an tropical country, good luck surviving winters.

      • frezik@midwest.social
        link
        fedilink
        arrow-up
        10
        arrow-down
        1
        ·
        edit-2
        1 year ago

        WHAT? This is completely new information that nobody has filled journals with papers working out solutions.

      • blazera@kbin.social
        link
        fedilink
        arrow-up
        1
        ·
        1 year ago

        we’ve had grid scale storage for a long time now. storing energy for things like cars needed new technology for weight concerns, but for electrical utilities? You lift a weight upwards with an electric motor during peak times, and let the weight down to spin a generator when you need it. It’s been in application with pumped hydro storage for a while.

      • LarmyOfLone@lemm.ee
        link
        fedilink
        arrow-up
        1
        ·
        1 year ago

        There are plausible technical designs to make huge batteries out of dirt / dirt cheap materials (e.g. liquid metal battery but there are others). I wonder how that compares to building other power plants. The problem is that humanity is just too stupid to live.

          • LarmyOfLone@lemm.ee
            link
            fedilink
            arrow-up
            1
            ·
            1 year ago

            Humanity as a global civilization, not individual humans. The latter you can have intelligent conversations with, the former has the rationality of a slime mold - only growing towards where there is energy / food / money.

  • afraid_of_zombies@lemmy.world
    link
    fedilink
    arrow-up
    33
    arrow-down
    4
    ·
    1 year ago

    Maybe one day we will produce a civilization capable of using technology as it comes out instead of one that decided to call it quits decades ago. Oh sure we got cellphones but we are still burning coal. Because nuclear is scary.

    • TheHarpyEagle@lemmy.world
      link
      fedilink
      arrow-up
      29
      arrow-down
      3
      ·
      edit-2
      1 year ago

      I think nuclear energy is a great idea in theory, but I have absolutely zero trust in companies handling nuclear waste responsibly. It’s not like they have a great track record.

      That being said, pretty excited about this if it’s as safe as they say.

    • Cosmic Cleric@lemmy.world
      link
      fedilink
      arrow-up
      9
      arrow-down
      9
      ·
      1 year ago

      Because nuclear is scary.

      Nuclear isn’t scary. It’s waste, on the other hand, is.

      But you know, it’s not like we’ve not had multiple examples of nuclear power plants failing catastrophically and destroying things around them for miles, and for decades/centuries.

      Having said that, if they did come out with new technology version of a nuclear power plant that is safe and that with a catastrophic failure does not harm the environment around itself then I would be all for it. I just don’t think the technology is there for that. I hear they’re working on it though.

      • afraid_of_zombies@lemmy.world
        link
        fedilink
        arrow-up
        8
        arrow-down
        4
        ·
        1 year ago

        In other words you want special pleading. All other energy techs are allowed to have problems and produce waste except for one.

        • Cosmic Cleric@lemmy.world
          link
          fedilink
          arrow-up
          3
          arrow-down
          8
          ·
          1 year ago

          All other energy techs are allowed to have problems and produce waste except for one.

          The other ones don’t fail catastrophically like nuclear does.

          The other ones don’t produce waste that is the worst kind of toxicity for Humanity that lasts for hundred of years.

          Solve those problems, and I’ll get on board that train.

          • FireTower@lemmy.world
            link
            fedilink
            arrow-up
            5
            arrow-down
            3
            ·
            1 year ago

            The other ones don’t fail catastrophically like nuclear does.

            Comparing (some) other forms of energy’s deaths to nuclear is like comparing mosquito bites to shark bites. A sharks kill a lot less people than mosquitoes, but a mosquito bite won’t make the news.

          • glukoza@lemmy.dbzer0.com
            link
            fedilink
            arrow-up
            3
            arrow-down
            2
            ·
            edit-2
            1 year ago

            The other ones don’t fail catastrophically like nuclear does.

            take a look some excerpts:

            December 1952: The Great Smog of London caused by the burning of coal, and to a lesser extent wood, killed 12,000 people within days to months due to inhalation of the smog.[18]

            The Vajont Dam in Italy overflew. Filling the reservoir caused geological failure in valley wall, leading to 110 km/h landslide into the lake; water escaped in a wave over the top of dam. Valley had been incorrectly assessed as stable. Several villages were completely wiped out, with an estimated between 1,900 and 2,500 deaths.

            as /u/afraid_of_zombies said:

            All other energy techs are allowed to have problems and produce waste except for one.

          • SpacetimeMachine@lemmy.world
            link
            fedilink
            arrow-up
            4
            arrow-down
            3
            ·
            1 year ago

            Those problems literally HAVE been solved. You’re talking about a disaster from 50 years ago. Nuclear is quite literally one of the safest forms of energy production we have. And the waste is really not much of an issue. Not only is most of it recycled into new fuel, the entire United States hasn’t even made enough fuel to fill a football field since we started using nuclear power.

            • Cosmic Cleric@lemmy.world
              link
              fedilink
              arrow-up
              3
              arrow-down
              3
              ·
              edit-2
              1 year ago

              Those problems literally HAVE been solved.

              And are those designs in production today, or still on the drawing board?

              What percentage of reactors today have this new design that you speak of?

              the entire United States hasn’t even made enough fuel to fill a football field since we started using nuclear power.

              Citation required, because I remember them having to dig out a huge underground storage mine somewhere in the Southwest (nearby Vegas if my recollection is accurate) to handle all the waste that would be generated between all the power station reactors and all the hospitals that use radioactive devices and everything else.

          • JTheDoc@lemmy.world
            link
            fedilink
            arrow-up
            3
            arrow-down
            2
            ·
            1 year ago

            The coal industry emits magnitudes more unvetted radiation than any nuclear power plant will in it’s whole lifetime; as in, radiation is undetectable around a modern nuclear plant.

            Plus coal and oil extraction has it’s own problems with radiation. Nuclear produces stable, storable waste that if handled and buried correctly will never become an ecological issue.

            They’re built to a modern standard where it’s practically foolproof. Fukushima held up to an enormous earthquake followed by several tsunamis; that’s despite the poor operation of the plant.

            The damage we would have to cause to compromise and get rid of any nuclear reliance is far more immediate and concerning.

            Nuclear isn’t actually as complicated nor unpredictable as you’d think. They’ve solved ways to avoid melt downs such as the fuels being improved, the amount they process at one time, their cooling and the redundancies. The physical design of a modern station takes into account the worst situations that any given amount of fuel can give in a meltdown such as deep wells that are situated under a reactor to melt into. You won’t likely ever see in our lifetimes a station reaching critical meltdown and it not be because a government or private company cut corners.

            Scientists are doing this work, they know what they know and they know what they’re doing, it’s not really for everyone to politically involve ourselves with when no one ever does any valid research or basic knowledge of science without fear mongering.

            • Cosmic Cleric@lemmy.world
              link
              fedilink
              arrow-up
              3
              arrow-down
              1
              ·
              edit-2
              1 year ago

              So that’s a wall of text, with all the same standard counter points that is always made, some of which I disagree with, so I’ll just say I’m not anti-nuclear, I’m just anti-nuclear in its current design form.

              You give me a design that can protect the environment from catastrophic effects and with a waste product that can be safely handled, and I’ll get on board.

              I had read there is some salt based designs kicking around that seem to start going in that direction, but I don’t know if they’ve been moved forward or not.

              Fukushima held up to an enormous earthquake followed by several tsunamis; that’s despite the poor operation of the plant.

              Actually it wasn’t so much the poor operation of the plant, but the failure of the design of the plant to not take into account that after a major earthquake the elevation of the land that the plant sits on would go down, which makes the wall they put up the protect the plant from the ocean (especially after a tsunami) shorter than it should have been.

              Nuclear isn’t actually as complicated nor unpredictable as you’d think.

              I’m actually quite informed on the subject.

              without fear mongering.

              Someone disagreeing with you is not fear-mongering.

              • JTheDoc@lemmy.world
                link
                fedilink
                arrow-up
                1
                arrow-down
                1
                ·
                edit-2
                1 year ago

                Generally when a fact is established it does become the “standard counterpoints” people use.

                You personally said “Nuclear waste is scary” - that’s why I said people fearmonger. If you’re informed you’d actually understand it’s a very safe form of waste

                Also you said it wasn’t due to poor operation, but then state an example of a plant being poorly operated. If those were obvious and established problems that they already should have been able to account for, then someone dicked it up. Nuclear is only dangerous when it’s irresponsibly used. We already have accounted for the mayor pitfalls. It’s not worth saying it’s dangerous, bad for the environment, or scary in terms of waste.

                Nuclear energy isn’t some half theory or some risky experiment, it’s pretty well established and understood at this point.

                I also said people in general shouldn’t be so politically involved when they’re not informed, I actually said that because I shared and hoped you would be able to agree on that. I wasn’t demeaning you.

                • Cosmic Cleric@lemmy.world
                  link
                  fedilink
                  arrow-up
                  2
                  arrow-down
                  1
                  ·
                  edit-2
                  1 year ago

                  You personally said “Nuclear waste is scary” - that’s why I said people fearmonger.

                  The point I was trying to make was that the plants operation was one risk, while it’s waste output was a second risk.

                  That wasn’t fear-mongering, that was stating facts.

                  But to be blunt, if an area is destroyed because of nuclear waste then that is kind of scary, a land that can’t be lived in anymore (or for a very long time) it’s something right out of a fiction story (Mordor-ish).

                  Expressing that is not fear mongering, its a real possibility, we see that today around nuclear reactors that have catastrophically failed. We humans rarely ‘salt the Earth’ so we can’t live in a place anymore, it’s anathema to what we believe in.

                  Nuclear is only dangerous when it’s irresponsibly used.

                  Which always happens sooner or later because human beings are involved. The current designs can’t cope for humans being humans (especially for those who love profits) and their flaws are exaggerated to catastrophic proportions.

                  I also said people in general shouldn’t be so politically involved when they’re not informed, I actually said that because I shared and hoped you would be able to agree on that. I wasn’t demeaning you.

                  Well since you were replying to me directly in an argumentative tone, I could only assume that point was directed at me. And that statement is that I’m commenting uninformed, which is not correct, and hence why I pushed back.

                  What I do usually to avoid that misunderstanding is that I explicitly state something along the lines of “not you directly, but generally” when I’m trying to make a general comment in response to a specific individual.

                  I do appreciate you clarifying, and hope that was an honest clarification, and not just trying to avoid the pushback of the criticism that was initially correct.

                  And finally, I do agree, people should be informed when they comment, but as long as they’re not being obstructive there’s nothing wrong with also just expressing oneself to others, your fears and hopes, without knowing all the facts. This is supposed to be a conversation, and people can learn new facts while the conversation is happening, versus having to know everything before they enter the conversation.

          • afraid_of_zombies@lemmy.world
            link
            fedilink
            arrow-up
            3
            arrow-down
            2
            ·
            1 year ago

            The other ones don’t fail catastrophically like nuclear does.

            BP gulf oil spill.

            The other ones don’t produce waste that is the worst kind of toxicity for Humanity that lasts for hundred of years.

            Fracking, contaminated ground water

            • Cosmic Cleric@lemmy.world
              link
              fedilink
              arrow-up
              3
              arrow-down
              2
              ·
              edit-2
              1 year ago

              BP gulf oil spill.

              Fracking, contaminated ground water

              I would still argue those are less catastrophic than Chernobyl, Fukushima, Three Mile Island, etc. Their destructive effects disappear a lot quicker than a nuclear catastrophe negative effect would.

              Having said that, oil is second worse after nuclear. I’m not advocating for oil.

              My hopes are on fusion and solar/battery.

              No form of energy generation is 100% perfect.

      • Allero@lemmy.today
        link
        fedilink
        arrow-up
        4
        arrow-down
        1
        ·
        edit-2
        1 year ago

        Nuclear fusion does make this prospect potentially real. The only thing they emit is neutron radiation, and a mean lifetime of free neutron is 14 minutes 47 seconds.

        As per current fission technology, while nuclear waste is real issue, nuclear power is historically one of the most ecological ways to produce power. Catastrophes are now less and less likely, with many lessons learned from Chernobyl and Fukushima - lessons that are now implemented in all reactors around the world.

        I live in a city powered by a reactor of the same model there was in Chernobyl, but modified following the incident. I fully trust it.

      • irotsoma@lemmy.world
        link
        fedilink
        English
        arrow-up
        2
        ·
        1 year ago

        There already is tech that’s safer and tech for reprocessing the waste. The fact that we haven’t used it speaks volumes. It’s not profitable and never will be. So unless we move energy production back to government owned, it’s not going to happen. So yeah if it’s nuclear waste that lasts millions or billions of years vs spending some money on battery tech to compliment renewables until we get something like fusion tech, yeah, it makes no sense to invest in dirty energy.

      • Sylvartas@lemmy.world
        link
        fedilink
        arrow-up
        3
        arrow-down
        1
        ·
        1 year ago

        Funnily enough, coal plants waste is infinitely more harmful than nuclear waste because the general public doesn’t see it as scary, so it’s barely regulated.

    • irotsoma@lemmy.world
      link
      fedilink
      English
      arrow-up
      5
      arrow-down
      6
      ·
      edit-2
      1 year ago

      If companies can’t be trusted to dispose of coal waste properly, what’s the likelihood they’ll dispose of nuclear waste properly? And reactors that don’t produce dangerous waste, don’t produce enough energy to be worth the cost unless you add the cost of proper disposal of the waste. And since they don’t have to do that, they just store it in temporary storage pools indefinitely, the cost is much cheaper to stick with current tech. So fission will never be safe.

    • KairuByte@lemmy.dbzer0.com
      link
      fedilink
      arrow-up
      20
      arrow-down
      1
      ·
      1 year ago

      I believe the general principal is giving such a device “seed energy” to get it started, then just feeding the power it produces back into itself. The only time you’d ever need that solar farm is to get it started.

      You could also pump that energy into other fusion reactors to get “unlimited energy” so to speak.

  • wabafee@lemmy.world
    link
    fedilink
    arrow-up
    29
    arrow-down
    9
    ·
    edit-2
    1 year ago

    We’ll probably be able to harvest solar power from space then beam it to Earth in a practical way first, than nuclear fusion becomes practical.

    • Rutty@sh.itjust.works
      link
      fedilink
      arrow-up
      12
      ·
      1 year ago

      I’m not sure what comment to reply to, but I feel obligated to remind people that the sun is a fusion reaction.

      • TrueStoryBob@lemmy.world
        link
        fedilink
        arrow-up
        3
        ·
        1 year ago

        Basically, the idea is to build orbital solar farms (where is always sunny), then beam the energy produced back to the ground with microwave transmitters and ground recievers. It’s technically feasible, unlike fusion we have all the technology needed to do it right now. However, it’s cost and resource prohibitive. The US government studied building such a system in the 1970-80’s after the energy crisis. We could do it, but building it would take a generation to get running and about double the US’s current military annual budget. Launch costs are coming down since then, but the industrialization of space and the moon will take generations and would need to be an international effort to have any chance of success.

    • CileTheSane@lemmy.ca
      link
      fedilink
      arrow-up
      2
      ·
      1 year ago

      We’ll probably be able to harvest solar power from space then beam it to Earth in a practical way first, than nuclear fusion becomes practical.

      You mean solar panels?

  • Fat Tony@lemmy.world
    link
    fedilink
    arrow-up
    8
    arrow-down
    4
    ·
    1 year ago

    I thought because of the law of conservation of energy you couldn’t get more energy out of something you put in.

    • frezik@midwest.social
      link
      fedilink
      arrow-up
      6
      arrow-down
      1
      ·
      1 year ago

      If there was a working lab design with constant, net positive output announced tomorrow, then it would take ten years before we saw a commercialized version.

      Still worth pursuing, but it’s not going to be our savior.

      • intensely_human@lemm.ee
        link
        fedilink
        arrow-up
        1
        arrow-down
        4
        ·
        1 year ago

        To need a savior we would need saving.

        If you look at the UN predictions on climate change it’s gonna alter like 2% of our world, slowing us down slightly. It’s not going to kill us.

    • Eufalconimorph@discuss.tchncs.de
      link
      fedilink
      arrow-up
      1
      ·
      1 year ago

      It’s the NIF. It’s a hydrogen bomb simulator, it’s not intended to become a power production mechanism. Roughly 0% of their budget involves researching how to turn single fusion explosions at most every few hours into continuous power output.

      Scales great for getting around nuclear test ban treaties though, much quicker to retest than blowing up Pacific islands.

      • Ð Greıt Þu̇mpkin@lemm.ee
        link
        fedilink
        arrow-up
        1
        ·
        1 year ago

        That sounds like we just gave a bunch of nerds a videogame where they get to throw nukes at random scenery and then claim they’re doing science by writing down the results.